Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

2.
Am J Med Genet A ; 194(5): e63516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168088

RESUMO

The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Deficiência Intelectual , Megalencefalia , Displasia Septo-Óptica , Síndrome de Sotos , Criança , Humanos , Fatores de Transcrição NFI/genética , Síndrome de Sotos/genética , Éxons/genética , Megalencefalia/genética , Deficiência Intelectual/genética , Análise de Sequência de RNA
3.
J Mol Diagn ; 26(3): 159-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103592

RESUMO

As the number of genes associated with various germline disorders continues to grow, it is becoming more difficult for clinical laboratories to maintain separate assays for interrogating disease-focused gene panels. One solution to this challenge is termed slice testing, where capture backbone is used to analyze data specific to a set of genes, and for this article, we will focus on exome. A key advantage to this strategy is greater flexibility by adding genes as they become associated with disease or the ability to accommodate specific provider requests. Here, we provide expert consensus recommendations and results from an Association for Molecular Pathology-sponsored survey of clinical laboratories performing exome sequencing to compare a slice testing approach with traditional static gene panels and comprehensive exome analysis. We explore specific considerations for slices, including gene selection, analytic performance, coverage, quality, and interpretation. Our goal is to provide comprehensive guidance for clinical laboratories interested in designing and using slice tests as a diagnostic.


Assuntos
Conselheiros , Patologia Molecular , Humanos , Estados Unidos , Patologistas , Inquéritos e Questionários
4.
Genet Med ; 26(3): 101036, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38054408

RESUMO

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.

5.
Genet Med ; 25(12): 100947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37534744

RESUMO

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Humanos , Testes Genéticos/métodos , Genômica , Exoma/genética , América do Norte
6.
Chest ; 163(5): e201-e205, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164583

RESUMO

Pulmonary arteriovenous malformations (PAVMs) are rare and most often identified in patients with hereditary hemorrhagic telangiectasia (HHT). We describe a patient with severe hypoxemia and orthodeoxia with imaging findings consistent with PAVMs. Resected lung pathologic findings confirmed the presence of numerous microscopic vascular abnormalities within the right lower lobe that was consistent with diffuse pulmonary arteriovenous shunts. Family history was negative for HHT but was positive for pulmonary arterial hypertension (PAH) in two second-degree relatives. A vascular malformation gene panel was negative for genes that commonly are associated with HHT but identified a pathogenic variant in the gene encoding bone morphogenetic protein receptor-2 (BMPR2 p.Cys123∗). Pathogenic variants in BMPR2 are a well-known cause of hereditary PAH; there have been several reports to date of patients with PAVMs and PAH. However, this is the first patient to be reported with a pathogenic variant in BMPR2 to have PAVMs in isolation.


Assuntos
Fístula Arteriovenosa , Malformações Arteriovenosas , Hipertensão Arterial Pulmonar , Veias Pulmonares , Telangiectasia Hemorrágica Hereditária , Humanos , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/cirurgia , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Pulmão , Fístula Arteriovenosa/complicações , Veias Pulmonares/cirurgia , Veias Pulmonares/anormalidades , Artéria Pulmonar/anormalidades , Hipertensão Pulmonar Primária Familiar/complicações , Hipertensão Arterial Pulmonar/complicações
7.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185208

RESUMO

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Assuntos
Deficiência Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagem , Genótipo , Deficiência Intelectual/genética , Fenótipo , Convulsões/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-36379720

RESUMO

Congenital myasthenic syndrome (CMS) is a group of 32 disorders involving genetic dysfunction at the neuromuscular junction resulting in skeletal muscle weakness that worsens with physical activity. Precise diagnosis and molecular subtype identification are critical for treatment as medication for one subtype may exacerbate disease in another (Engel et al., Lancet Neurol 14: 420 [2015]; Finsterer, Orphanet J Rare Dis 14: 57 [2019]; Prior and Ghosh, J Child Neurol 36: 610 [2021]). The SNAP25-related CMS subtype (congenital myasthenic syndrome 18, CMS18; MIM #616330) is a rare disorder characterized by muscle fatigability, delayed psychomotor development, and ataxia. Herein, we performed rapid whole-genome sequencing (rWGS) on a critically ill newborn leading to the discovery of an unreported pathogenic de novo SNAP25 c.529C > T; p.Gln177Ter variant. In this report, we present a novel case of CMS18 with complex neonatal consequence. This discovery offers unique insight into the extent of phenotypic severity in CMS18, expands the reported SNAP25 variant phenotype, and paves a foundation for personalized management for CMS18.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Mapeamento Cromossômico , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Linhagem , Fenótipo , Proteína 25 Associada a Sinaptossoma/genética , Sequenciamento Completo do Genoma
9.
BMC Bioinformatics ; 23(1): 482, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376793

RESUMO

BACKGROUND: Despite numerous molecular and computational advances, roughly half of patients with a rare disease remain undiagnosed after exome or genome sequencing. A particularly challenging barrier to diagnosis is identifying variants that cause deleterious alternative splicing at intronic or exonic loci outside of canonical donor or acceptor splice sites. RESULTS: Several existing tools predict the likelihood that a genetic variant causes alternative splicing. We sought to extend such methods by developing a new metric that aids in discerning whether a genetic variant leads to deleterious alternative splicing. Our metric combines genetic variation in the Genome Aggregate Database with alternative splicing predictions from SpliceAI to compare observed and expected levels of splice-altering genetic variation. We infer genic regions with significantly less splice-altering variation than expected to be constrained. The resulting model of regional splicing constraint captures differential splicing constraint across gene and exon categories, and the most constrained genic regions are enriched for pathogenic splice-altering variants. Building from this model, we developed ConSpliceML. This ensemble machine learning approach combines regional splicing constraint with multiple per-nucleotide alternative splicing scores to guide the prediction of deleterious splicing variants in protein-coding genes. ConSpliceML more accurately distinguishes deleterious and benign splicing variants than state-of-the-art splicing prediction methods, especially in "cryptic" splicing regions beyond canonical donor or acceptor splice sites. CONCLUSION: Integrating a model of genetic constraint with annotations from existing alternative splicing tools allows ConSpliceML to prioritize potentially deleterious splice-altering variants in studies of rare human diseases.


Assuntos
Processamento Alternativo , Doenças Raras , Humanos , Doenças Raras/genética , Splicing de RNA , Íntrons , Éxons , Mutação , Sítios de Splice de RNA
10.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
11.
J Mol Diagn ; 24(8): 915-923, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595154

RESUMO

Friedreich ataxia is a rare autosomal recessive, neuromuscular degenerative disease caused by an expansion of a trinucleotide [guanine-adenine-adenine (GAA)] repeat in intron 1 of the FXN gene. It is common in the White population, characterized by progressive gait and limb ataxia, lack of tendon reflexes in the legs, loss of position sense, and hypertrophic cardiomyopathy. Detection and genotyping of the trinucleotide repeat length is important for the diagnosis and prognosis of the disease. A two-tier genotyping assay with an improved triple-repeat primed PCR (TR-PCR) for alleles <200 GAA repeats (±1 to 5 repeats) and an agarose gel-based, long-range PCR (LR-PCR) assay to genotype expanded alleles >200 GAA repeats (±50 repeats) is described. Of the 1236 DNA samples tested using TR-PCR, 31 were identified to have expanded alleles >200 repeats and were reflexed to the LR-PCR procedure for confirmation and quantification. The TR-PCR assay described herein is a diagnostic genotyping assay that reduces the need for further testing. The LR-PCR component is a confirmatory test for true homozygous and heterozygous samples with normal and expanded alleles, as indicated by the TR-PCR assay. The use of this two-tier method offers a comprehensive evaluation to detect and genotype the smallest and largest number of GAA repeats, improving the classification of FXN alleles as normal, mutable normal, borderline, and expanded alleles.


Assuntos
Ataxia de Friedreich , Adenina , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Genótipo , Guanina , Humanos , Proteínas de Ligação ao Ferro/genética , Reação em Cadeia da Polimerase , Sefarose , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos
12.
Pediatr Res ; 92(5): 1364-1369, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35115709

RESUMO

BACKGROUND: Rapid next-generation sequencing (NGS) offers the potential to shorten the diagnostic process and improve the care of acutely ill children. The goal of this study was to report our findings, including benefits and limitations, of a targeted NGS panel and rapid genome sequencing (rGS) in neonatal and pediatric acute clinical care settings. METHODS: Retrospective analysis of patient characteristics, diagnostic yields, turnaround time, and changes in management for infants and children receiving either RapSeq, a targeted NGS panel for 4500+ genes, or rGS, at the University of Utah Hospital and Primary Children's Hospital, from 2015 to 2020. RESULTS: Over a 5-year period, 142 probands underwent rapid NGS: 66 received RapSeq and 76 rGS. Overall diagnostic yield was 39%. In the majority of diagnostic cases, there were one or more changes in clinical care management. Of note, 7% of diagnoses identified by rGS would not have been identified by RapSeq. CONCLUSIONS: Our results indicate that rapid NGS impacts acute pediatric care in real-life clinical settings. Although affected by patient selection criteria, diagnostic yields were similar to those from clinical trial settings. Future studies are needed to determine relative advantages, including cost, turnaround time, and benefits for patients, of each approach in specific clinical circumstances. IMPACT: The use of comprehensive Mendelian gene panels and genome sequencing in the clinical setting allows for early diagnosis of patients in neonatal, pediatric, and cardiac intensive care units and impactful change in management. Diagnoses led to significant changes in management for several patients in lower acuity inpatient units supporting further exploration of the utility of rapid sequencing in these settings. This study reviews the limitations of comparing sequencing platforms in the clinical setting and the variables that should be considered in evaluating diagnostic rates across studies.


Assuntos
Cuidados Críticos , Sequenciamento de Nucleotídeos em Larga Escala , Lactente , Recém-Nascido , Criança , Humanos , Estudos Retrospectivos , Mapeamento Cromossômico , Diagnóstico Precoce
13.
Mol Genet Genomic Med ; 10(4): e1888, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119225

RESUMO

BACKGROUND: Genetic disorders contribute to significant morbidity and mortality in critically ill newborns. Despite advances in genome sequencing technologies, a majority of neonatal cases remain unsolved. Complex structural variants (SVs) often elude conventional genome sequencing variant calling pipelines and will explain a portion of these unsolved cases. METHODS: As part of the Utah NeoSeq project, we used a research-based, rapid whole-genome sequencing (WGS) protocol to investigate the genomic etiology for a newborn with a left-sided congenital diaphragmatic hernia (CDH) and cardiac malformations, whose mother also had a history of CDH and atrial septal defect. RESULTS: Using both a novel, alignment-free and traditional alignment-based variant callers, we identified a maternally inherited complex SV on chromosome 8, consisting of an inversion flanked by deletions. This complex inversion, further confirmed using orthogonal molecular techniques, disrupts the ZFPM2 gene, which is associated with both CDH and various congenital heart defects. CONCLUSIONS: Our results demonstrate that complex structural events, which often are unidentifiable or not reported by clinically validated testing procedures, can be discovered and accurately characterized with conventional, short-read sequencing and underscore the utility of WGS as a first-line diagnostic tool.


Assuntos
Hérnias Diafragmáticas Congênitas , Proteínas de Ligação a DNA/genética , Genômica , Hérnias Diafragmáticas Congênitas/genética , Humanos , Recém-Nascido , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos
14.
J Mol Diagn ; 24(2): 177-188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35074075

RESUMO

Exome reanalysis is useful for providing molecular diagnoses for previously uninformative samples. However, challenges exist in implementing a practical solution for clinicians and laboratories. This study complements the current literature by providing practical considerations for patient-level and cohort-level reanalyses. The Clinical and Laboratory Standards Institute assembled the Document Development Committee and an interpretation working group that developed the framework for reevaluation of exome-based data. We describe two distinct but complementary approaches toward exome reanalyses: clinician-initiated patient-level reanalysis, and laboratory-initiated cohort-level reanalysis. We highlight the advantages and constraints for both approaches, and provide a high-level conceptual guide for ordering clinicians and laboratories through the critical decision pathways. Because clinical exome sequencing continues to be the standard of care in genetics, exome reanalysis would be critical in increasing the overall diagnostic yield. A systematic guide will facilitate the efficient adoption of reevaluation of exome data for laboratories, health care professionals, genetic counselors, and clinicians.


Assuntos
Serviços de Laboratório Clínico , Exoma , Exoma/genética , Humanos , Laboratórios , Laboratórios Clínicos , Sequenciamento do Exoma
15.
J Pers Med ; 12(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35055388

RESUMO

The primary goal of precision genomics is the identification of causative genetic variants in targeted or whole-genome sequencing data. The ultimate clinical hope is that these findings lead to an efficacious change in treatment for the patient. In current clinical practice, these findings are typically returned by expert analysts as static, text-based reports. Ideally, these reports summarize the quality of the data obtained, integrate known gene-phenotype associations, follow allele segregation and affected status within the sequenced samples, and weigh computational evidence of pathogenicity. These findings are used to prioritize the variant(s) most likely to cause the given patient's phenotypes. In most diagnostic settings, a team of experts contribute to these reports, including bioinformaticians, clinicians, and genetic counselors, among others. However, these experts often do not have the necessary tools to review genomic findings, test genetic hypotheses, or query specific gene and variant information. Additionally, team members often rely on different tools and methods based on their given expertise, resulting in further difficulties in communicating and discussing genomic findings. Here, we present clin.iobio-a web-based solution to collaborative genomic analysis that enables diagnostic team members to focus on their area of expertise within the diagnostic process, while allowing them to easily review and contribute to all steps of the diagnostic process. Clin.iobio integrates tools from the popular iobio genomic visualization suite into a comprehensive diagnostic workflow, encompassing (1) genomic data quality review, (2) dynamic phenotype-driven gene prioritization, (3) variant prioritization using a comprehensive set of knowledge bases and annotations, (4) and an exportable findings summary. In conclusion, clin.iobio is a comprehensive solution to team-based precision genomics, the findings of which stand to inform genomic considerations in clinical practice.

16.
NPJ Genom Med ; 6(1): 60, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267211

RESUMO

In studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.

17.
Mol Genet Genomic Med ; 9(12): e1685, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33834622

RESUMO

BACKGROUND: Disrupted endothelial BMP9/10 signaling may contribute to the pathophysiology of both hereditary hemorrhagic telangiectasia (HHT) and pulmonary arterial hypertension (PAH), yet loss of circulating BMP9 has not been confirmed in individuals with ultra-rare homozygous GDF2 (BMP9 gene) nonsense mutations. We studied two pediatric patients homozygous for GDF2 (BMP9 gene) nonsense mutations: one with PAH (c.[76C>T];[76C>T] or p.[Gln26Ter];[Gln26Ter] and a new individual with pulmonary arteriovenous malformations (PAVMs; c.[835G>T];[835G>T] or p.[Glu279Ter];[Glu279Ter]); both with facial telangiectases. METHODS: Plasma samples were assayed for BMP9 and BMP10 by ELISA. In parallel, serum BMP activity was assayed using an endothelial BRE-luciferase reporter cell line (HMEC1-BRE). Proteins were expressed for assessment of secretion and processing. RESULTS: Plasma levels of both BMP9 and BMP10 were undetectable in the two homozygous index cases and this corresponded to low serum-derived endothelial BMP activity in the patients. Measured BMP9 and BMP10 levels were reduced in the asymptomatic heterozygous p.[Glu279Ter] parents, but serum activity was normal. Although expression studies suggested alternate translation can be initiated at Met57 in the p.[Gln26Ter] mutant, this does not result in secretion of functional BMP9. CONCLUSION: Collectively, these data show that homozygous GDF2 mutations, leading to a loss of circulating BMP9 and BMP10, can cause either pediatric PAH and/or "HHT-like" telangiectases and PAVMs. Although patients reported to date have manifestations that overlap with those of HHT, none meet the Curaçao criteria for HHT and seem distinct from HHT in terms of the location and appearance of telangiectases, and a tendency for tiny, diffuse PAVMs.


Assuntos
Proteínas Morfogenéticas Ósseas/sangue , Códon sem Sentido , Fator 2 de Diferenciação de Crescimento/sangue , Fator 2 de Diferenciação de Crescimento/genética , Homozigoto , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/etiologia , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/etiologia , Alelos , Angiografia , Linhagem Celular , Criança , Ensaio de Imunoadsorção Enzimática , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Fenótipo , Síndrome
19.
J Mol Diagn ; 23(1): 103-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197628

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.


Assuntos
Triagem de Portadores Genéticos/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Alelos , Linhagem Celular , Variações do Número de Cópias de DNA , Dosagem de Genes , Aconselhamento Genético/métodos , Técnicas de Genotipagem/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteína 2 de Sobrevivência do Neurônio Motor/genética
20.
J Clin Med ; 9(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167572

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a "second-hit" that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...